๐
1. Collect Data
Gather raw data sources
๐ Identify data sources (databases, APIs, files)
๐ฅ Extract data from multiple sources
๐พ Store in unified format (CSV, JSON, DB)
๐ Document data provenance & metadata
๐ท๏ธ
2. Label Data
Add correct answers/tags
๐ Define label categories & guidelines
๐ฅ Assign human annotators or use tools
โ
Quality check with multiple reviewers
๐ Measure inter-annotator agreement
๐งน
3. Prepare Data
Clean & transform
๐๏ธ Remove duplicates & handle missing values
๐ Normalize & scale numerical features
๐ข Encode categorical variables
โ๏ธ Split into train/validation/test sets
๐ง
4. Train Model
Model learns patterns
๐ฏ Select appropriate algorithm (SVM, RF, NN)
โ๏ธ Configure hyperparameters
๐ Iterate: forward pass โ loss โ backprop
๐ Monitor training loss & validation metrics
โ
5. Evaluate
Test performance
๐ Calculate metrics (accuracy, F1, RMSE)
๐ฒ Analyze confusion matrix & errors
๐ Plot ROC curves & learning curves
๐ Cross-validate & check for overfitting
๐ฏ
6. Deploy & Predict
Use in production
๐ฆ Export model (pickle, ONNX, SavedModel)
๐ Deploy to API endpoint or edge device
โก Process real-time inference requests
๐ Monitor drift & retrain as needed
๏ฟฝ๏ฟฝ Email data
โ
๐ท๏ธ "Spam" / "Not Spam"
โ
๐ง Model learns
โ
โ
Predicts new emails!